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ABSTRACT
A photonic-crystal slab can support bound states in the continuum (BICs) that have infinite lifetimes but
are embedded into the continuous spectrum of optical modes in free space.The formation of BICs requires
a total internal reflection (TIR) condition at both interfaces between the slab and the free space. Here, we
show that the TIR of Bloch waves can be directly obtained based on the generalized Fresnel equations
proposed. If each of these Bloch waves picks up a phase with integer multiples of 2π for traveling a round
trip, light can be perfectly guided in the slab, namely forming a BIC. A BIC solver with low computational
complexity and fast convergence speed is developed, which can also work efficiently at high frequencies
beyond the diffraction limit where multiple radiation channels exist. Two examples of multi-channel BICs
are shown and their topological nature in momentum space is also revealed. Both can be attributed to the
coincidence of the topological charges of far-field radiations from different radiation channels.The concept
of the generalized TIR and the TIR-based BIC solver developed offer highly effective approaches for
explorations of BICs that could have many potential applications in guided-wave optics and enhanced
light–matter interactions.

Keywords: bound states in the continuum, total internal reflection, Bloch waves, generalized Fresnel
equations, topological charges

INTRODUCTION
Bound states in the continuum (BICs) are a spe-
cial kind of resonant states with infinite lifetimes
even though they are embedded into the continuous
spectrum of free space [1–3], originally proposed by
von Neumann and Wigner for an electron in a spe-
cially designed local potential [4]. Recently, BICs
have been found to be a generic wave phenomenon
existing in various physical systems, such as pho-
tonic [5–22], acoustic [23] and plasmonic ones
[24,25].The ultra-highQ factors near BICs (includ-
ing quasi-BICs [26,27]) render many interesting
applications possible, such as polarization control
[11,12], lasing [28–31], sensing [32] and non-linear
optics [27].

As a platform for nanophotonics, photonic-
crystal (PhC) slabs can guide light perfectly for
optical modes below the light cone [33]. Above
the light cone, guided modes become guided reso-
nances since they are leaky [34,35]. BICs can ex-

ist as isolated points on the bands of guide reso-
nances [5–13]. From the far-field viewpoint, they
can be interpreted as the vortex singularities of
far-field polarizations with quantized topological
charges [9]. These topological charges can be cre-
ated, annihilated and merged in the Brillouin zone
[12–15]. From the viewpoint of wave interference,
some BICs in PhC slabs can be treated as the
Friedrich–Wintgen type that originates from the de-
structive interference of two different guided reso-
nances [36–38].

We proposed that the formation mechanism of
BICs in a PhC slab can be further interpreted in
terms of the interference of bulk Bloch states [10].
For auniformdielectric slab, the formationof guided
waves requires two conditions: a total internal reflec-
tion (TIR) at the interfaces between the slab and
free space and that waves along the direction per-
pendicular to the slab are standing ones.The forma-
tions of BICs in a PhC slab must also satisfy these
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two conditions. In a uniform dielectric slab, the con-
dition of TIR is simply that the angle between the
propagating direction and the slab-surface normal is
greater than the critical angle. However, any optical
mode supported in a PhC slab is the superposition
of bulk Bloch waves of such an infinite PhC rather
than a single plane wave. As a result, the TIR con-
dition for a PhC slab becomes that of the TIR of
constituent Blochwaves. If the total transmission for
an optical mode consisting of multiple Bloch waves
from the PhC slab side to the free-space side van-
ishes, TIR will occur. It is just the condition of the
TIR of Bloch waves stemming from the multiple in-
terferenceof the constituentBlochwaves.Therefore,
the study of BICs can start from a basic problem:
the diffraction of Bloch waves at a single interface.
The key point is that there may exist multiple re-
flected and refracted waves because of Bragg scatter-
ing [33,39]. At the interface between a uniform di-
electric and free space, the wave vector component
k‖ parallel to the interface is a good quantum num-
ber due to the continuous translational symmetry
at the interface. TIR can occur when |k‖| is larger
than the free-space wave vector since the perpendic-
ular component of the wave vector k⊥ on the free-
space side becomes imaginary. InPhCs, the continu-
ous translational symmetry is broken. However, the
discrete translational symmetry leads to the equiva-
lence of k‖ and k‖ + nG, where n is an integer and
G is a reciprocal lattice vector. This new degree of
freedom renders the TIR of Bloch waves possible
via a coherent way [10,21] to be discussed in detail
later.

Here, the TIR of Bloch waves is fully investi-
gated from the viewpoint of diffraction. The gener-
alized Fresnel equations for Bloch waves are derived
and formulas for the TIR of two Bloch waves with
a very compact form are obtained analytically. For
PhC slabs, the conventional conditions for the exis-
tence of waveguide modes can be directly general-
ized based on the TIR of Bloch waves and the solu-
tions of the generalized conditions are exactly BICs.
A BIC solver is therefore developed with low com-
putational complexity and fast convergence speed,
and can be used for the search and determination of
BICs in a very large parameter space. Different from
previous studies of BICs in PhC slabs, which are re-
stricted to a single radiation channel, the generalized
conditions can be also applied to the case of multi-
ple radiation channels.Therefore, the BIC solver can
find BICs for any number of radiation channels at
any high frequency. Examples of BICswith two radi-
ation channels are given and it is demonstrated that
multi-channel BICs require the coincidence of the
topological charges of far-filed radiations in all radi-
ation channels.

THEORY AND RESULTS
Theory for the TIR of Bloch waves
The TIR of Bloch waves can be interpreted from
the perspective of diffraction. We start from a sim-
ple planar grating shown in Fig. 1a. If there is only
0th diffraction order, the direct transmission is not
zero in general. Therefore the simplest non-trivial
case is that there are two propagating diffraction or-
ders with wave vectors k and k−G. It is the discrete
translational symmetry of the grating that leads to
the Bragg scattering between k and k+ nG, offering
a higher degree of freedom to control the incident
waves that is not restricted to a single plane wave
with a fixed k. To be specific, if a zero total trans-
mission can occur by introducing two incident plane
waveswith k and k−G, TIR is thus realized in a very
unusual way even though the transmission for each
of the incidentwave is not zero. In Fig. 1a, diffraction
of incident plane waves with wave vector k (purple
arrows) and k −G (red arrows) is shown. For both
cases, there are 0th and−1st (or 1st) diffraction or-
ders. By definition, the 0th order remains the same
wave vector as the incident one, so the order of the
principal maximum and the secondary maximum is
in fact switched for these two incident waves. If the
two plane waves k and k −G are incident onto the
grating simultaneously, the elimination of transmis-
sion shown in the right figure of Fig. 1a requires that
the intensities of the diffracted waves satisfy the rela-
tion:

Ik(−1)/Ik(0) = Ik−G(0)/Ik−G(1), (1)

where Ik(m) represents the intensity of the mth-
order diffraction for the incident wave vector k.
However, according to the Fraunhofer diffraction
from a diffraction grating [40], the principal max-
imum of m= 0 is usually the dominant maximum
and Equation (1) cannot be satisfied generally.

If a high-index (nh) material is adopted as a
substrate shown in Fig. 1b, we can possibly make
the propagating diffraction order with wave vec-
tor kb −G evanescent. Here, kb is the wave vec-
tor on the transmission side with refractive index
nb and kb,‖ = k‖. The condition is that k‖ satisfies
nbk0 < |k‖ −G| < nhk0, where k0 is the free-space
wave vector. Under this condition, only one prop-
agating diffraction order survives for both the in-
cidence of k and k −G, and Equation (1) is re-
laxed greatly and reduced to Ik(0)= Ik−G(1). The
destructive interferenceof the transmittedwaves can
be readily realized just by appropriately choosing
the relative phase and amplitude of the two incident
waves. Note that the essential point is that we have a
sufficient degreeof freedom for the incidentwaves to
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Figure 1. (a) Diffraction of a simple planar grating with only two diffraction orders. For
the incident plane wave with a wave vector k (or k− G), the intensity of the trans-
mitted wave has a principal maximum in the direction of k (or k− G) and a secondary
maximum in the direction of k− G (or k). Therefore, total reflection cannot be realized
by altering the relative coefficient of incident waves k and k− G to form destructive
interference in both diffraction orders on the transmission side. (b) Combination of a
high-index (nh) medium and a planar grating. The introduction of a high-index medium
can convert the propagating diffraction order with kb − G to be evanescent, where kb
is the wave vector in the background medium with a refractive index nb and kb,‖ = k‖.
Only one propagating diffraction order survives on the transmission side under the con-
dition nbk0 < |k‖ − G| < nhk0. (c) A semi-infinite PhC acting as the combination of a
high-index medium and a grating. Incident waves now should be changed from plane
waves to Bloch waves.

cancel out the transmission. Similar destructive in-
terference was considered to achieve some unique
phenomena such as complete reflections [41–43]
and perfect anti-reflections [44].

In fact, the combination of a grating and a high-
index material can be replaced by a PhC [33], as
shown inFig. 1c.We focusona1Dsemi-infinitePhC
with a period of a in the x direction and uniform
in the y direction. The alternating dielectric layers
in the PhC have relative permittivity ε1 and ε2, and
thicknesses a–d and d, respectively.The background
is chosen to be air with εb = 1. Different from that
in the Fraunhofer diffraction of gratings, we choose
the incident waves as Bloch waves rather than plane
waves since Bloch waves are eigenstates of the peri-
odic structure and any optical modes supported are
a superposition of these Bloch waves. A Bloch wave
with wave vector k + nG is equivalent to that with
k. Obviously, all of the arguments above for the exis-
tence of TIR can be applied to Bloch waves here.

The existence of multiple Bloch waves can be
clearly seen in isofrequency contours. The disper-
sion relation, which relates the frequencyω, the nor-
mal wave vector kz and the Bloch wave vector kx,
is given in the Supplementary Information. Figure 2
shows three examples with different frequencies ω.
The isofrequency contours in air are shown by black
lines, whereas those for the PhC are indicated by red
lines. The red lines will be folded back when they
go beyond the first Brillouin zone (see the dashed
red lines) due to the periodicity in the x direction.

In Fig. 2a, at a low frequency, the isofrequency con-
tours for the PhC and air in the first Brillouin zone
are simply two circles without band folding, offer-
ing conventional refraction and transmission. The
coefficient for the incident wave is denoted by a1,
whereas that for the reflected and transmitted waves
are denoted by r1 and t0, respectively. The subscript
in t0 stands for 0th-order diffraction in air. In this
case, the number of propagating Bloch waves in the
PhC (Np) and that of propagating diffraction orders
in air (Nr) are equal to 1. The propagating diffrac-
tion orders can also be viewed as radiation channels.
As frequency increases, band folding takes place and
band gaps appear at the edges of the first Brillouin
zone, as shown in Fig. 2b, and Np of the propagat-
ing Bloch waves is increased to 2, whereas Nr of the
radiation channels is still 1. Thus, for a single Bloch
wave incident with a coefficient a1, in addition to the
reflection r1 (the same Bloch wave), an additional
Bloch wave with a coefficient r2 will also be excited.
When frequency is further increased, more Bloch
waves will be present as additional reflected waves,
such as r3 shown in Fig. 2c. Moreover, when fre-
quency goes beyond the diffraction limit, the −1st-
order diffracted wave in air will change from evanes-
cent to propagating, so that for the case in Fig. 2c, we
haveNp = 3 andNr = 2.

The formalism for the diffraction of Bloch waves
incident from a PhC to air are outlined as follows.
Here, we only consider transverse electric (TE)
Bloch waves (E = E y ŷ ,H = Hx x̂ + Hzẑ). Trans-
verse magnetic (TM) Bloch waves (H = Hy ŷ , E =
Ex x̂ + Ezẑ) are discussed in the Supplementary In-
formation. Suppose that a series of TE Bloch waves
with a fixed frequency ω and Bloch wave vector kx
impinge on the PhC/air interface at z= 0.The elec-
tric field inside the PhC can be written as follows:

E in
y (x, z)=

∞∑
n=1

(
ane i k

(n)
z z+rn e−i k(n)z z

)
u (n)(x)e i kx x ,

(2)
where an and rn are respectively the complex coef-
ficients of the incident and reflected Bloch waves,
k(n)z is the normal wave vector of the nth Bloch
wave and u (n)(x) is the periodic-in-cell part of the
nth Bloch wave function. Suppose we have Np inci-
dent propagating Bloch waves 1 ≤ n ≤ Np. Bloch
waves with the order n>Np are evanescent waves
with kz being purely imaginary. Physically, incident
evanescent waves that increase away from the inter-
face should be excluded for this semi-infinite PhC,
namely an>Np = 0. The transmitted wave in air can
be expressed as follows:

E out
y (x, z) =

∞∑
m=−∞

tme i (kx,m x+kz,m z), (3)
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Figure 2. (a)−(c) Diffraction of a single Bloch wave incident from a PhC to air shown
in the upper panels and corresponding isofrequency contours in the lower panels for
three examples from low to high frequency. The isofrequency contours for the PhC in
(out of) the first Brillouin zone are denoted by solid (dashed) red lines, whereas the
isofrequency contours in air are shown by black lines. The parallel wave vectors of the
incident, reflected and transmitted waves are the same and indicated by black dashed
lines. The number of propagating Bloch waves in the PhC (Np) and that of propagating
diffraction orders in air (Nr) for a fixed kx are Np = 1 and Nr = 1 in (a), Np = 2 and
Nr = 1 in (b) and Np = 3 and Nr = 2 in (c).

where kx,m = kx + mG and kz,m =
√
k20 − k2x,m .

Here, tm is the complex transmission coefficient for
themth diffraction order. At the interface, a Fourier
transform of the boundary conditions (the continu-
ity of tangential E andH fields) gives:

T =↔
X (A + R) (4)

and

↔
�T =↔

� (A − R), (5)

where (T)m = tm , (A)n = an , (R)n = rn ,
↔
Xmn =

1
a

∫ x0+a
x0

u (n)(x)e−imGxd x ,
↔
�mn = k(n)z

↔
Xmn and

↔
�mn = kz,mδmn . Note that the first Nr elements of
T correspond to the radiation channels in air. To
solve Equations (4) and (5), the number of Fourier
components (indexed by m) should be chosen to
be the same as the number of Bloch waves (indexed
by n). By eliminating T, the relation between the
reflection and incidence reads:

R =
(↔
� + ↔

�
↔
X
)−1 (↔

� − ↔
�

↔
X
)
A ≡↔

� A.

(6)
Then, the transmission can be expressed as follows:

T =↔
X

(↔
I + ↔

�

)
A ≡↔

M A, (7)

where
↔
I is the identity matrix. Since we are only in-

terested in the transmissionof the radiation channels
(denoted by Tr), Equation (7) can be reduced to:

Tr = ↔
MrAp, (8)

whereAp only consists of the firstNp items ofA, cor-

responding to the propagating Bloch waves, and
↔
Mr

is a submatrix of
↔
M with elements

↔
Mi j only taking

1≤ i≤Nr and 1≤ j≤Np.
Equations (6) and (8) are in fact the generalized

Fresnel equations for Bloch waves. Based on these
two equations, the problem of the incidence of any
numberofBlochwaves canbe solved.Obviously, the
TIR condition of Bloch waves is also a direct conse-
quence, given by:

Tr = 0. (9)

When the number of propagating Bloch waves is
equal to that of radiation channels, namelyNp =Nr,
a non-trivial solution of this condition requires that
det(

↔
Mr) = 0, which is difficult to realize for a PhC.

However, if Np >Nr, a non-trivial solution of inci-
dence Ap always exists for Bloch waves.

Based on the TIR of Bloch waves, light can be
further guided in a PhC slab with a finite thickness
h. Distinct from the semi-infinite PhC, all evanes-
cent Bloch waves are allowed in a PhC slab, with ei-
ther positive or negative attenuation in the z direc-
tion. The origin of the z-axis is now set at the center
of the PhC slab for convenience. Equations (6) and
(7) are also slightly modified via replacing an with
ane−i k(n)z h . Supposing that the TIR conditionTr = 0
is satisfied at the upper interface for some properly
initiated incidence an, the reflected waves will then
become the incident waves at the lower interface. In
the case that the ratio rn/an remains a constant for
any arbitrary n, theTIR condition can bemaintained
at the lower interface.

However, the TIR condition is not the only con-
dition for forming a waveguide mode. The phase
accumulated after a round trip should be integer
multiples of 2π , also called the guidance condition
[45]. This guidance condition can be directly gen-
eralized just by counting the accumulated phase for
each Bloch wave. At the interface of the PhC slab, a
phase shiftϕ

(n)
r = arg(rn/ane−i k(n)z h) takes place for

the nth Bloch wave. Note that the additional term
e−i k(n)z h in the phase shift comes from the shift of
the origin of z comparedwith the above semi-infinite
PhCcase. Similar to that for conventionalwaveguide
modes, the total phase change for a round trip should
be integer multiples of 2π for the nth Bloch wave,
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Table 1. Conventional and generalized conditions for
waveguide modes.

Waveguide modes TIR Guidance condition

Conventional θ > θc kzh + ϕr = mπ

Generalized ti = 0
for 1≤ i≤Nr

k(n)z h + ϕ
(n)
r = m(n)π

which can be simply expressed as follows:

k(n)z h + ϕ(n)
r = m(n)π, (10)

wherem(n) is an integer. Equations (9) and (10) can
be viewed as the generalized conditions for waveg-
uidemodes in a PhC slab, as summarized in Table 1.
Waveguidemodes that satisfy the generalized condi-
tions inside the light cone are precisely BICs. Com-
bining Equations (9) and (10), we also obtain that
rn/an = ±1 for all Bloch waves, where the positive
and negative signs correspond to even and odd sym-
metries in the z direction, respectively.

The generalized conditions for waveguidemodes
can be used to efficiently determine BICs in the
kx–ω space. In addition to propagating Bloch waves,
evanescent waves with purely imaginary kz can exist
near the interface of the PhC slab and should also be
taken into account. Based on the generalized condi-
tions forwaveguidemodes, aBIC solver has beende-
signed [46]with the advantage of very low computa-
tional complexity and fast convergence speed. Since
the Bloch waves we adopt form an appropriate basis
set inside the PhC, the positions of BICs in the kx–
ω space converge very quickly if only a few evanes-
cent waves are considered, in addition to the propa-
gating Bloch waves (see Supplementary Fig. 1). To
be specific, we first ensure that the TIR condition
is satisfied at one of the interfaces for every (kx, ω)
point. The TIR condition requires that the number
of propagatingBlochwaves is larger than that of radi-
ation channels (Np >Nr).The corresponding phase
shift, ϕ(n)

r , at this interface can be obtained by solv-
ing Equations (6) and (9) (see Supplementary In-
formation for details). Second, we build a database
of ϕ(n)

r for a PhC in the whole kx–ω space. Finally,
for any thickness h, the total phase of a round trip
for the nth Bloch wave inside the PhC slab is sim-
ply k(n)z h + ϕ

(n)
r .What the solver should do is to de-

termine whether this phase is integer multiples ofπ .
Therefore, the computational time is mainly spent
on the construction of a reflection-phase database.
With this database, the time to search BICs for dif-
ferent h values is negligible. We show an example of
searching BICs in a range of kx–ω space withNp = 2
and Nr = 1 in Supplementary Fig. 1, in full agree-

ment with the results simulated by the finite element
method.

It is worth mentioning that the algorithm based
on the generalized conditions for waveguide modes
can be applied to not only the kx-axis but the whole
Brillouin zone. As a result, this BIC solver can work
in the whole k‖–ω space, where k‖ = (kx, ky). How-
ever, BICs usually exist on high-symmetry lines. In
Supplementary Fig. 2, we give another example of
searching BICs in the ky-axis in the parameter space.

TIR of two propagating Bloch waves
Thesimplest case forTIRofBlochwaves is that there
are only two propagating Bloch waves in the PhC
(Np = 2) and one radiation channel in air (Nr = 1),
as shown inFig. 1c. In this case, an analytical solution
can be obtained. We assume that only propagating
Bloch waves are considered and other evanescent
waves are neglected. According to the above analy-
sis, we only need to achieve the TIR of two Bloch
waves at a single interface and then adopt the gen-
eralized guidance condition to fix BICs. The gener-
alized Fresnel equations for Bloch waves can be sim-
plified considerably and a concise form for the rela-
tive coefficient of the incident waves can be directly
obtained when TIR occurs at the interface. For TE
waves, it can be expressed as (see Supplementary In-
formation for details):

a2
a1

= −1 + Z2

1 + Z1
, (11)

where Zn = kz,−1/k
(n)
z has a similar form of rela-

tive surface impedance [47]. Here, kz,−1 is the nor-
mal wave vector of−1st-order diffracted wave in air,
which is purely imaginary. Moreover, the reflection
coefficients at the interface are as follows:

rn
an

= 1 − Zn

1 + Zn
, (12)

which takes a similar form of the reflection coeffi-
cient in the conventional Fresnel equations. Note
that Equation (12) holds only when the TIR of two
Bloch waves occurs.

TheTIR condition becomes slightly complicated
for two TM Bloch waves since the electric field is a
vector in nature for theTMcase but is a scalar for the
TE case [48]. An approximate form of the Fourier
transformof ε(x) is used: ε−1(x) ∼ κ0 + κ1e i G x +
κ−1e−i G x . When the TIR of two TM Bloch waves
occurs, similar forms of the relative incidence and
reflection coefficients can be obtained as those in
Equations (11) and (12).However, the definition of
Zn should be modified and expressed as follows (see
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Supplementary Information for details):

Z1 = kz,−1/εb

k(1)z /εH
and Z2 = C

kz,−1/εb

k(2)z /εH
,

(13)
whereεH = κ−1

0 andC = ((k(2)z )
2 + k2x − kx .G)/

((k(2)z )
2 + k2x + kxG − G 2).

The TIR condition of two Bloch waves can be re-
alized via Equations (11) and (12) with appropriate
definitions of Zn for TE and TM waves. The phase
shift of TIR for the nth Bloch wave is as follows:

ϕ(n)
r = arg (rn/an) = 2 arctan (i Zn) . (14)

Note that diffracted evanescent waves are neglected
in the above TIR condition, so Equations (11–14)
work for the case when the index contrast is not
too large, namely� = |ε2 − ε1|/ε1 � 1. Strikingly,
even when � → 0, i.e. the index contrast is vanish-
ingly small, Zn approaches a constant for any (kx,
ω) point.Therefore, two important conclusions can
be drawn. First, BICs obtained from Equations (10)
and (14) approach a series of fixed points in the k‖–
ω space [21]. Generally, the band of guided reso-
nances can be regarded as the folded band of the
waveguide modes in an effectively uniform waveg-
uide.The existence of discrete BIC points in the lim-
iting case manifests the non-trivial physical conse-
quence that continuous translational symmetry is
broken into a discrete translational symmetry even
if � → 0. Second, it is known that the introduction
of a substrate can destroy BICs [49].This is because
the TIR conditions at the upper and lower interfaces
are different; the combination of TIR at a single in-
terface and guidance condition in Table 1 cannot re-
store the waveguide mode after a round trip. Or, in
otherwords, theTIRconditions at the two interfaces
contradict each other if there is a substrate.

Multi-channel BICs
When frequency increases, more than one propagat-
ing diffraction order (i.e. radiation channel) in air
appears, shown in Fig. 2c. The construction of BICs
is more subtle since all radiation channels should
be closed. Note that multi-channel BICs occurring
at kx = 0 or π/a were discussed in Ref. [50]. How-
ever, since these multi-channel BICs appear at the
high-symmetry points in the Brillouin zone, the cor-
responding radiation channels are not completely
independent. Strikingly, the above generalized
conditions for waveguide modes can be directly
applied to the case with multiple radiation channels.
The BIC solver we designed can thus work well to
determine multi-channel BICs. Two different types
of BICs with two radiation channels are taken as

examples and shown in Fig. 3a and b, which consist
respectively of three and four propagating Bloch
modes.These twomulti-channel BICs appear on the
TE(1)

0 and TE(−2)
0 bands, as highlighted by red dots

in Fig. 3. Here, TE(m)
0 represents the fundamental

TEmode withm being the index of the band folding
in the reduced-zone scheme. It is known that BICs
interpreted by topological vortexes can exist ro-
bustly in the parameter space [9].The robustness of
BICs should be reexamined for multi-channel BICs
since they only exist for some specific thicknesses—
for example, hBIC = 1.948a and 1.968a in Fig. 3a
and b, respectively. The Q factors of the guided
resonance modes near the multi-channel BICs are
plotted inFig. 3c andd for differenth values. It canbe
clearly seen that theQ factor diverges only when the
thickness is equal to hBIC. This divergence behavior
disappears as long as the thickness is slightly varied
away from hBIC, which is distinct from robust BICs
below the diffraction limit. The divergence rates are
also plotted in Fig. 3e and f, which are Q ∼ 1/δk2x
and Q ∼ 1/δh2 (inverse square law), respectively.
Here, δkx = |kx − kx , BIC| and δh= |h− hBIC|.

It has been demonstrated that BICs below the
diffraction limit are vortex centers of the polarization
directions of far-field radiations [9], characterized
by topological charges and robust then in pa-
rameter space. However, for multi-channel BICs,
an increased number of radiation channels can
make an essential difference and the topological
nature is manifested in other ways. To reveal the
topological nature, the far-field polarization states
are investigated for each radiation channel (see Sup-
plementary Information for details). The far-field
polarization states displayed in Fig. 4c correspond
to themulti-channel BIC shown in Fig. 3a.There are
two radiation channels in air and three propagating
Bloch waves in the PhC, as shown in Fig. 4a.The to-
tal Q factor, defined by Q = (1/Q0 + 1/Q−1)−1,
takes into account the radiative losses from the 0th-
order diffraction (Q0) and −1st-order diffraction
(Q−1). In the upper and lower panels of Fig. 4, Q0
and Q−1 are plotted separately as purple and green
lines, respectively, and the polarization states of the
0th- and −1st-order diffraction are also shown cor-
respondingly. SinceQ diverges at the multi-channel
BIC for the thickness h = 1.948a, both Q0 and Q−1
have to diverge simultaneously. First, this implies
that there is one topological charge (marked by the
black dot) in both two polarization maps as shown
in Fig. 4c; second, the two topological charges
coincide with each other in momentum space,
giving rise to a multi-channel BIC without any
leakage. Note that the topological charge is defined
by vm = (1/2π)

∮
L dk‖ · ∇k‖φm(k‖). Here, L is a

closed loop in momentum space surrounding the
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Figure 3. Multi-channel BICs with two radiation channels. (a) and (b) Simulated band
structures for h= 1.948a and h= 1.968a, respectively. Multi-channel BICs (red dots)
exist on the TE(1)0 band in (a) and TE(−2)

0 band in (b). The light blue (orange) shaded re-
gion indicates the region in which there are three (four) propagating Bloch modes in
the PhC and two radiation channels in air. (c) and (d) Simulated Q factors of the guided
resonances for different h in the TE(1)0 and TE(−2)

0 bands, respectively. (e) and (f) Diver-
gence behavior of Q factors for the two multi-channel BICs with δkx = |kx − kx , BIC| and
δh= |h− hBIC|. The solid lines in (e) and (f) represent the fitting of the inverse square
of δkx or δh. Here, the other system parameters are chosen as ε1 = 1, ε2 = 4.9 and
d= 0.5a.

singular point in the counterclockwise direction
and φm(k||) = 1/2 arg[S1,m(k||) + i S2,m(k||)]
is the orientation angle of the polarization state,
where Si ,m is the Stokes parameter of the mth-order
diffraction. For themulti-channel BIC in Fig. 4c, the
topological charges are v0 = +1 and v−1 = −1.
It is worth emphasizing that these two topological
charges come from the same eigenstate with fixed
k‖ and ω but belong to different radiation channels
(i.e. the propagating diffraction orders with k‖ and
k‖−G). Therefore, they are independent and will
not merge or annihilate each other in momentum
space. This topological property is distinct from
that of merging BIC [13,31,38], wherein the topo-
logical charges are linked to the same radiation
channel.

When the thickness of thePhC slab is slightly var-
ied away from hBIC, themulti-channel BICno longer
exists, as shown in Fig. 4b and d, andQ0 is bounded,
whereas Q−1 still diverges at a certain kx. The topo-
logical charge v0 = +1 for the 0th-order diffraction
splits into two half-integer charges of 1/2 with the

total topological charge conserved and each being
circularly polarized. Because of the y-mirror symme-
try of the system, the two circularly polarized states
are symmetric about the kx-axis and carry the same
charge with different handedness (or chirality). The
stateswith right-handed circular polarization (RCP)
and left-handed circular polarization (LCP) are in-
dicated by red and blue dots, respectively, in the up-
per panels of Fig. 4b and d. The splitting of an inte-
ger charge into two half-integer charges here comes
only from the change of thickness and the sym-
metry of the system is perfectly maintained. Note
that below the diffraction limit, the breaking of the
C2 symmetry is necessary in order to observe this
kind of splitting [12].This non-symmetry-breaking-
induced splitting manifests the unusual topologi-
cal nature for multi-channel BICs. For the −1st-
order diffraction, the topological charge persists and
slightly moves along the kx-axis (see the lower panel
in Fig. 4). The dotted arrows in Fig. 4 are a guide
for the eyes and indicate the evolution of topolog-
ical charges. The half-integer charge of RCP (red
point) passes through the kx-axis from positive to
negative ky, while the oneof LCP(blue point) passes
through the kx-axis from negative to positive ky. The
two half-integer charges meet each other at the kx-
axis. Multi-channel BICs lying in the kx–ω space
with only three propagating Blochmodes can be un-
derstood as the coincidence of two integer charges
in momentum space: one coming from the merg-
ing of two half-integer charges and the other be-
ing a stable integer charge moving on the kx-axis
slowly.

Multi-channel BICs can even manifest a differ-
ent topological nature if they lie in the region of the
kx–ω space with different numbers of propagating
Bloch modes. Another example, the multi-channel
BIC marked in Fig. 3b, is demonstrated by showing
the far-field polarization states of the 0th- and−1st-
order diffraction separately in Fig. 5c. Similarly, both
Q0 and Q−1 diverge at this BIC point and the two
topological charges coincide with each other in mo-
mentum space so that leakage is eliminated for these
two radiation channels. Note that the two topolog-
ical vortexes defined in the two radiation channels
can either exhibit the same amount of charge, as
shown in Fig. 5c, or different amounts of charge, as
shown in Fig. 4c. Furthermore, both integer charges
in Fig. 5c will split into a pair of half-integer charges
of 1/2 with opposite chirality when the thickness of
the PhC slab is slightly varied from hBIC, as shown in
Fig. 5b and d.This non-symmetry-breaking-induced
splitting of an integer charge into two half-integer
charges is a generic phenomenon since it hap-
pens in both radiation channels. In short, multi-
channel BICs in the region with Np = 4 and Nr = 2
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Figure 4. Topological nature of multi-channel BICs. (a) Schematic view of the radiation
channels of a guided resonance withNr = 2 (no. of radiation channels) andNp = 3 (no.
of propagating Bloch modes). (b)–(d) Evolution of Q factors and polarization maps for
different thickness h. Results for the 0th- and −1st-order diffraction are shown in the
upper and lower panels, respectively.Q0 (purple line) andQ−1 (green line) arise from the
radiative loss of these two radiation channels. The black (blue and red) dots indexed by
the topological charge±1 (1/2) represent the vortex centers (circularly polarized states
with LCP and RCP). Here, the multi-channel BIC corresponds to that in Fig. 3a.
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Figure 5. Topological nature of multi-channel BICs. (a) Schematic view of the radiation
channels of a guided resonance with Nr = 2 (no. of radiation channels) and Np = 4
(no. of propagating Bloch modes). (b)–(d) Evolution of Q factors and polarization maps
for different thickness h. Results for the 0th- and −1st-order diffraction are shown in
the upper and lower panels, respectively. Both integer charges for the 0th and −1st
diffraction orders come from the merging of two half-integer charges. The BIC in (c) is
the one shown in Fig. 3b in the kx–ω space.

can also be interpreted as the coincident point of
two integer charges in momentum space, both of
which result from the merging of two half-integer
charges.

CONCLUSION
In summary, we derive the generalized Fresnel equa-
tions for the Bloch waves at a PhC/air interface,
from which the TIR condition of Bloch waves are
obtained. For a PhC slab, by combining the TIR of
Bloch waves and the guidance condition, the gen-
eralized conditions for waveguide modes are given,
with solutions being precisely the BICs. Distinct
fromBICs below the diffraction limit, multi-channel
BICs with frequencies beyond the diffraction limit
are found which can only exist for some specific ge-
ometric parameters of the PhC slab. They possess a
quitedifferent topological nature stemming fromthe
coincidence of two integer charges in the polariza-
tion maps of two different radiation channels. Inte-
ger topological charges can split into twohalf-integer
charges evenwithout breaking any symmetry, which
is generic for multi-channel BICs. Our BIC solver
with the generalized conditions for waveguiding in
PhC slabs incorporated offers a powerful tool for
readily finding BICs at any frequency in momen-
tum space. The distinct topological nature revealed
in multi-channel BICs from conventional ones may
render new opportunities in designs and applica-
tions of BICs possible in nanophotonics and en-
hanced light–matter interactions as well.
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21. Gao X, Zhen B and Soljačić M et al. Bound states in the continuum in fiber
Bragg gratings. ACS Photon 2019; 6: 2996–3002.

22. Song Q, Hu J and Dai S et al. Coexistence of a new type of bound state in the
continuum and a lasing threshold mode induced by PT symmetry. Sci Adv 2020;
6: eabc1160.

23. Xiao YX, Ma G and Zhang ZQ et al. Topological subspace-induced bound state
in the continuum. Phys Rev Lett 2017; 118: 166803.

24. Azzam SI, Shalaev VM and Boltasseva A et al. Formation of bound states in
the continuum in hybrid plasmonic-photonic systems. Phys Rev Lett 2018; 121:
253901.

25. Sun S, Ding Y and Li H et al. Tunable plasmonic bound states in the continuum
in the visible range. Phys Rev B 2021; 103: 045416.

26. Liu Z, Xu Y and Lin Y et al. High-Q quasibound states in the continuum for
nonlinear metasurfaces. Phys Rev Lett 2019; 123: 253901.

27. Koshelev K, Kruk S and Melik-Gaykazyan E et al. Subwavelength dielectric res-
onators for nonlinear nanophotonics. Science 2020; 367: 288–92.

28. Hirose K, Liang Y and Kurosaka Y et al. Watt-class high-power, high-beam-
quality photonic-crystal lasers. Nat Photon 2014; 8: 406–11.

29. Kodigala A, Lepetit T and Gu Q et al. Lasing action from photonic bound states
in continuum. Nature 2017; 541: 196–9.

30. Huang C, Zhang C and Xiao S et al. Ultrafast control of vortex microlasers.
Science 2020; 367: 1018–21.

31. Hwang MS, Lee HC and Kim KH et al. Ultralow-threshold laser using super-
bound states in the continuum. Nat Commun 2021; 12: 4135.

32. Yesilkoy F, Arvelo ER and Jahani Y et al. Ultrasensitive hyperspectral imaging
and biodetection enabled by dielectric metasurfaces. Nat Photonics 2019; 13:
390–6.

33. Joannopoulos JD, Johnson SG and Winn JN et al. Photonic Crystals: Molding
the Flow of Light. Princeton: Princeton University Press, 2008.

34. Astratov VN, Whittaker DM and Culshaw IS et al. Photonic band-structure ef-
fects in the reflectivity of periodically patterned waveguides. Phys Rev B 1999;
60: R16255–8.

35. Fan S and Joannopoulos JD. Analysis of guided resonances in photonic crystal
slabs. Phys Rev B 2002; 65: 235112.

36. Wang Z, ZhangH andNi L et al.Analytical perspective of interfering resonances
in high-index-contrast periodic photonic structures. IEEE J Quantum Electron
2016; 52: 6100109.

37. Bulgakov EN and Maksimov DN. Avoided crossings and bound states in the
continuum in low-contrast dielectric gratings. Phys Rev A 2018; 98: 053840.

38. Kang M, Zhang S and Xiao M et al.Merging bound states in the continuum at
off-high symmetry points. Phys Rev Lett 2021; 126: 117402.

39. Karagodsky V, Chase C and Chang-Hasnain CJ. Matrix Fabry–Perot resonance
mechanism in high-contrast gratings. Opt Lett 2011; 36: 1704–6.

40. Born M and Wolf E. Principles of Optics. Cambridge: Cambridge University
Press, 1999.

41. Karagodsky V and Chang-Hasnain CJ. Physics of near-wavelength high contrast
gratings. Opt Express 2012; 20: 10888–95.

42. Chang-Hasnain CJ and YangW. High-contrast gratings for integrated optoelec-
tronics. Adv Opt Photon 2012; 4: 379–440.

43. NiraulaM, Yoon JWandMagnusson R. Concurrent spatial and spectral filtering
by resonant nanogratings. Opt Express 2015; 23: 23428–35.

44. Wang KXZ, Yu ZF and Sandhu S et al. Condition for perfect antireflection by
optical resonance at material interface. Optica 2014; 1: 388–95.

45. Kong JA. Electromagnetic Wave Theory. Hoboken: John Wiley & Sons, 1986.
46. Bicks: a BIC Solver for One Dimensional Photonic Crystals.

https://github.com/PMRG-LE707/bicks (2 June 2021, date last accessed).
47. Xiao M, Zhang ZQ and Chan CT. Surface impedance and bulk band geometric

phases in one-dimensional systems. Phys Rev X 2014; 4: 021017.
48. Saleh BEA and Teich MC. Fundamentals of Photonics. Hoboken: John Wiley &

Sons, 2019.
49. Sadrieva ZF, Sinev IS and Koshelev KL et al. Transition from optical bound states

in the continuum to leaky resonances: role of substrate and roughness. ACS
Photonics 2017; 4: 723–7.

50. Bulgakov EN and Sadreev AF. Bloch bound states in the radiation continuum in
a periodic array of dielectric rods. Phys Rev A 2014; 90: 053801.

Page 9 of 9

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/1/nw

ac043/6542461 by Fudan university user on 31 M
arch 2023

http://dx.doi.org/10.1016/j.scib.2018.12.003
http://dx.doi.org/10.1088/1361-6633/abefb9
http://dx.doi.org/10.1103/PhysRevLett.100.183902
http://dx.doi.org/10.1103/PhysRevLett.109.067401
http://dx.doi.org/10.1038/nature12289
http://dx.doi.org/10.1103/PhysRevLett.113.037401
http://dx.doi.org/10.1103/PhysRevLett.113.257401
http://dx.doi.org/10.1103/PhysRevB.98.081405
http://dx.doi.org/10.1038/s41566-018-0177-5
http://dx.doi.org/10.1038/s41566-018-0177-5
http://dx.doi.org/10.1103/PhysRevLett.123.116104
http://dx.doi.org/10.1038/s41586-019-1664-7
http://dx.doi.org/10.1038/s41586-020-2181-4
http://dx.doi.org/10.1103/PhysRevLett.125.053902
http://dx.doi.org/10.1103/PhysRevLett.111.240403
http://dx.doi.org/10.1103/PhysRevLett.118.267401
http://dx.doi.org/10.1103/PhysRevA.95.023834
http://dx.doi.org/10.1103/PhysRevLett.123.023902
http://dx.doi.org/10.1103/PhysRevLett.122.153907
http://dx.doi.org/10.1021/acsphotonics.9b01202
http://dx.doi.org/10.1126/sciadv.abc1160
http://dx.doi.org/10.1103/PhysRevLett.118.166803
http://dx.doi.org/10.1103/PhysRevLett.121.253901
http://dx.doi.org/10.1103/PhysRevB.103.045416
http://dx.doi.org/10.1103/PhysRevLett.123.253901
http://dx.doi.org/10.1126/science.aaz3985
http://dx.doi.org/10.1038/nphoton.2014.75
http://dx.doi.org/10.1038/nature20799
http://dx.doi.org/10.1126/science.aba4597
http://dx.doi.org/10.1038/s41467-021-24502-0
http://dx.doi.org/10.1038/s41566-019-0394-6
http://dx.doi.org/10.1103/PhysRevB.60.R16255
http://dx.doi.org/10.1103/PhysRevB.65.235112
http://dx.doi.org/10.1109/JQE.2016.2568763
http://dx.doi.org/10.1103/PhysRevA.98.053840
http://dx.doi.org/10.1103/PhysRevLett.126.117402
http://dx.doi.org/10.1364/OL.36.001704
http://dx.doi.org/10.1364/OE.20.010888
http://dx.doi.org/10.1364/AOP.4.000379
http://dx.doi.org/10.1364/OE.23.023428
http://dx.doi.org/10.1364/OPTICA.1.000388
https://github.com/PMRG-LE707/bicks
http://dx.doi.org/10.1021/acsphotonics.6b00860
http://dx.doi.org/10.1021/acsphotonics.6b00860
http://dx.doi.org/10.1103/PhysRevA.90.053801

